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Abstract: This paper series presents a study on the nonlinear dynamics and adaptive control 

of the guidance (GG) with a fast astatic gyroscope in external gimbal suspension (GAR), using 

the concept of dynamic inversion and neural networks. In part 1, a new nonlinear dynamic model 

is derived for the GG placed on an aircraft (rocket), which expresses the GG dynamics relative to 

the absolute trihedron; generalized Euler equations are used for its dynamic elements (rotor-

inner gimbal assembly and outer gimbal). The absolute angular velocities of the GG's dynamic 

elements have as components their angular velocities relative to the trihedron linked to the 

guidance line, and the perturbing angular velocities induced by the rocket's angular velocities 

around its axes. The obtained nonlinear equations are then expressed in equivalent forms, where 

the new variables are the angular rotation velocities of the guidance line (the target coordinator 

axis, i.e., the gyroscope's proper angular momentum axis). The angular rotation velocities of the 

guidance line are chosen as the output variables of the GG, with respect to which the relative 

degrees of the equations are equal to 2. The input variables of the nonlinear dynamic model are 

the command currents applied to the command coils of the motors located in the axes of the two 

gyroscopic gimbals, which create, by gyroscopic effect, correction angular velocities the 

orientation of the target coordinator axis (guidance line) in the direction of the target line. The 

obtained equations contain terms that are functions of the input and output variables, as well as 

terms that are functions of the transport angular velocities of the guidance line and perturbing 

terms (functions of the rocket's angular velocities).  

 

Keyords: GG, GAR, guidance line, line of sigh. 

 

 1. INTRODUCTION 

 

Gyroscopic systems for orientation and stabilization represent an important category 

of gyrosystems, which are monoaxial or constructed on the principle of biaxial or triaxial 

force gyrostabilizers. These systems are used for orienting and stabilizing an axis (the 

target coordinator axis) along the guidance direction (an axis oriented towards a fixed 

point in space, called the target point). In the case of a platform with one, two, or three 

stabilization axes, the stabilized axis (guidance line) is the axis perpendicular to the plane 

of the stabilized platform, which can be terrestrial, maritime, aerial, or spatial [1-10].  
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The gyroscopes used are of the GAR type or speed gyroscopes, mounted on gimbals 

with mechanical suspension or magnetic suspension [11-18].  

In most specialized works, the dynamic models used and the control laws are linear, 

the mathematical models being obtained by linearization around specific orientation and 

stabilization directions. Some works utilize nonlinear models without decoupling or with 

decoupling and independent control of dynamic elements (rotor, inner gimbal, outer 

gimbal) [9-11, 19-25]. 

In Part 1 of this paper series is presented the structure of the monoaxial GG with 

GAR, with the trihedrons and the associated angular magnitudes of the GG is presented 

(Section 2), new nonlinear forms of dynamic models are derived (Section 3), and 

conclusions are formulated in Section 4. 

In Part 2 of this paper series is presented the design of the adaptive control 

architecture for the GG's stabilization and orientation using the Matlab/Simulink model, 

and the theoretical results are validated through numerical simulation. 

 

2. GG STRUCTURE, TRIEDRAS AND ASSOCIATED 

ANGULAR MAGNITUDES 

 

Such a guidance gyrosystem  (GG), shown in Fig. 1, consists of the following 

subsystems: GAR; target coordinator (TC), located on the inner gimbal (IC); adaptive 

controller, consisting of two correction networks; gyroscopic gimbals rotation motors 

(CM1 and CM2). TC measures angular deviations and  between its axis, that is, the 

line of sight (view) oz and the line of the target (guidance line) Tox ,highlighted in Fig. 2.a. 

 
 

FIG.1 Guidance gyrosystem (GG) structure 

 

The trihedron that refers to the base (the aircraft, A) is OXYX, the trihedron that refers 

to the outer gimbal (OG) is 1 0oxy z , the trihedron that refers to the inner gimbal (IG) 

is oxyz (RESAL's trihedron) and the trihedron that refers to the target line (OT) is 

T T Tox y z ; the axis Tox is oriented to the target (T), and Toy and Toz rotate around the axis 

Tox  with with angular velocity
Tx . The bearing of the target line is expressed by the 

angle  (with the components 1 and 2 in the two planes), and the bearing of the line of 

sight is expressed by the angle (with the components 1 and 2 in the two planes).  
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The aircraft A rotates around its axes with angular velocities , ,X Y Z   . These 

generate angular velocity
Tx which, according to Fig.2.a, has the expression [12] 

1 1

2

cos sin

cosT

X Z
x

   


−
=  (1) 

 

If
Tx would be null, the trihedron that refers to the target line would be 

, 0T T Tox y z   = and  oriented along the axis 1Toy oy  . But, because 0
Tx X  =  it 

follows that the trihedron T T Tox y z  rotates with angular velocity  (with angle ) thus 

passing in T T Tox y z . 

Angular velocity of rotation of the target line (OT,
Tx ) relative to the inertial frame of 

reference is t (with the components 1t and 2t ) and and the angular velocity of rotation 

of the target line relative to the trihedron connected to the base (A) is  (with the 

components 1 and 2 in the two planes), K is the angular momentum of the gyroscope (the 

axis of the target coordinator TC).  

 
a.                                                                      b. 

 

FIG.2 Trihedral coordinate systems and related angular measurements GG 

 

3. NONLINEAR FORMS OF GG DYNAMICS 

 

To obtain the equations of the dynamics of GG with GAR, the generalized Euler 

equations of motion of the assembly (R+IG) – gyroscopic rotor + IG around the axis ox 

and of the outer gimbal (OG) around the axis 1oy are used. These equations, for GAR 

located on a mobile base, are  

,
R IG

R IG R IG IG R IG R IG R IGx
y z z y x x x

K
K K M M M

t

+
+ + + + +

+  −  = =


 (2) 

0 0 1

R OG
OG OG OG OG OGx
z x x z y

K
K K M

t

+
+  −  =


 (3) 

 

the angular velocities of the assembly (R+IG), respectively of the outer gimbal OG, were 

indexed superiorly with (R+IG), IG or OG, suggesting that the respective dynamic 

element (R, IG,OG) does not rotate directly around the respective axis, mentioned by the 

(lower index). 
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From the relationship 

1 1 1 1 1 cos sinR IG OG OG R IG OG R IG R IG

y y y y y y zM M M M M M M + + + + += = + = + +  (4) 

is expressed 
1

OG

yM  

1 1 cos sinOG R IG R IG

y y y zM M M M + += − −  (5) 

R IG

yR IG IG R IG R IG R IG

y z x x z

K
M K K

t

+
+ + + +

= +  − 


 (6) 

R IG
R IG R IG R IG R IG R IGz
z x y y x

K
M K K

t

+
+ + + + +

= +  − 


 (7) 

,R IG R IG R IG R IG

x x x y x x

+ + =  =   =  =   (8) 

1 1 1

2 1 2 1 0 2 0

, ,

, ,

, ,

, ,

R IG R IG R IG R IG R IG R IG R IG

x x y y y y z z z z

R R R R R R

x x y y z z

IG IG IG IG IG IG

x x y y z z

OG OG OG OG OG OG

x x y y z z

K K K K K K K K K K

K A K B K C

K A K B K C

K B K A K C

+ + + += + = + = = +

=  =  = 

=  =  = 

=  =  = 

 (9) 

 

A,B = A,C are the moments of inertia of R about to the axes of the trihedron 

oxyz, 1 1 1, ,A B C  - the moments of inertia of IG about the axes of the trihedron oxyz 

and 2 2 2, ,A B C  - the moments of inertia of OG about the axes of the trihedron 1 0oxy z . 

The absolute angular velocities, with the following expressions, are expressed as sums 

between the angular velocities of the dynamic elements (R, IG, OG) relative to the trihedron 

connected to the target line T T Tox y z , angular transport velocities of the target 

line 1t and 2t , xT , with respect to the inertial trihedron and angular velocities , ,x y z    

induced by angular velocities , ,X Y Z    of the base (A); according to Fig.2.a, 

'
1

2 2

1 1

0

( cos sin ) ( )

cos cos sin

sin cos cos

, , , cos , cos

T T

T T

T T

R

x t x x t x x

R

y t x y t x y

R IG

z z x z x z

IG R IG R OG OG OG

x x y y x x y y z zy

          

           

           

       

 = − + + + − + + +

 = + − + + + +

 = +  = + + + + + +

 =   =   =  = + +  = z

 (10) 

 

With   the angular velocity of rotation of the gyroscopic rotor R was denoted. The 

angular velocities , ,x y z    have the following expressions 

1 1 1 1

1 2 2 1 2 1 2

2 1 2 2 2 2

1 2 1 2 1 2 1

sin( ) cos( ) sin cos

cos sin cos( ) sin sin cos sin

       cos sin sin sin cos cos

cos cos sin cos cos cos sin c

T

x X z X Z

y X Y Z X

Y Z x Y

z X Z X Z

          
            

         

           

= − + − + −

= − + + + − +

+ + = − +

= − − 2 2os cos
Tx  = −

 (11) 
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The moments acting about the axes ox and 1oy are expressed as sums of the disruptive 

moments
1(  and )e e

x yM M with dynamic damping moments 
1(  and )v v

x yM M  and with 

correction moments 
1(  and )c c

x yM M  

1 1 1 1,e v c e v c

x x x x y y y yM M M M M M M M= + + = + +    (12) 

Given that the external disruptive moments are produced by the angular velocities of the 

base , ,X Y Z   , will be omitted from now on 
1 and e e

x yM M , their role being taken by the 

disruptive moments generated by these angular velocities. The dynamic damping moments 

are expressed as 

2 2 1 1 1cos ,v v

x x x y y yM F F M F F    = = −  (13) 

with 1 and 2 by forms 

1
1 1 1

2 2

2 1 1

cos sin
cos cos

sin cos

T

T

xt
X Z Y

x X Z

       
 

       

+
= − + − −

= + − −

 (14) 

Equations (3) and (1) for ox and 1oy , with (5) ÷ (12), become  

2 2

0 1 2 1 2 2 1 1

2

1 1 2 1 1 0 2

2

0 1 1 2 2 0 1

[ ( ) ] ( sin ) [ cos ( ) ]

( )( ) ( ) ( )

( ) ( ) cos

(

T T T

T T T T T

T

y t x t x x

t x t x x x t x

c

x y t t

y Y

B F A B K B A

A B A B A B A

A A B K C M K B

F

          

            

        



+ − + + + + + − +

+ + + + + − + −  −

− + + + + − = − − +

+ 2 2

2 2 1 2 1 2 1 2

2 2 2 2

1 2 2 2 2 2 2 2 1 1

0 0 0 1 1

2

0 0

1 1
cos sin ) ( ) sin tan

2 2

1
sin tan cos ( )[ cos 2 ( )sin 2 ]

2

( ) ( ) ( )( )

T T

T

T T T T

x t x t Y

t X x t X Y X Y

x x x x x x t Y

A C

A B C

A F K K D A F C C

E E

        

            

           

 

− − − + − − −

−  + + + − + −

+ + + − + + + − + +

+ + 2

1 0 2 1 1 2( ) ( sin cos )
T

c

x x t t x X Z tM K A F         + = + + + −
 

(15) 

From the stability conditions, the correction moments 
1(  and )c c

x yM M  have the same signs 

as the correction moments:  

gxM K= − and
1

2

2 2 2= cos cos cos  = (cos ) ; gy gy gyM M M K    −  

The correction moments are chosen by next forms 

1 1 1 1 2 2

2 2 2 2 2

, cos cos cos

      cos 2( cos ) (cos )

c c c c

x g y y y

g

M k r K K M M M

k r K K

     

     

= − = − = = =

= − = − =
 (16) 

 with the notations 

1 1 2 2 1 1 2 2

0 0 0 0 3 1 1 2 2 1 1

2 2 1 1 2 2 0 0 0 1

0 0 1 1

, , / , / , / , / ,

/ , / , / , / , / , / ,

/ , / , / , / , / ( ) / ,

/ [( ) ( )] / ,

     

g g x x y yr r r k K r k K F K f F K f

B K b A K a A K a A K a A K a B K b

B K b C K c C K c C K c D K d A C C K

E K e C C B B K

   = − = − = = = =

= = = = = =

= = = = = = − −

= = + − +

 
(17) 

the ecuations (15) becomes 
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2 2 21
0 1 3 1 2 1 1 2 1 2

2

23 1
1 1 2 1 3 1 1 1 2 1 2

2

3 1 0 01
1 1 2 1 2 3 1 2 2 1 22 2

1 2 2 2

[ ( ) ] ( sin ) [cos

( ) ] ( )( )

( )

T T

T T T T

T T

g y t g x t x g

x g t x t x g x g g

x g g t g g x g g g g

r
b f a b

r

a b
b a r a b

r

a b a ar
a b

r r r r

        

         

          

+ − + + + + +

+
+ − + + + + − −

+
− + + +  − 2

23 1
1 2 1 2 2 1 2 2 1 2 2 1 2 22

2 1 2 2

2 2 1
0 2 2 2 0 1 0 1 1 1 2

1 1

20 0
1 2 1 22

1 1 2

(cos ) (cos ) ( )

(1 ) ( ) ( )
1

T

T T T T

T

g

x

g g g g g g g g g t y

g x g x g x g x x x g t Y g g

g g x g g

a b c
r r N t

r r r r

r r c c
a f d a f

r r r

e e

r r r




           

            

    

+

+
+ + + + = +

+
+ + + + + − + +

+ + 2 2 1 2 1 ( )g g t xr r N t  − = − +

 

(18) 

Where ( ) and ( )x yN t N t are perturbation terms that do not contain the angular velocities 

1 2,g g   and accelerations 1 2,g g  , that is, they contain only external disruptive terms; 

2 0 2 2 1 1 2

1 0 1 1 2 1 1 2 1

2

2 1 2 1 2 2 2 2

2 2

1 2 2 2 1 1 2

( ) ( sin sin

1
( ) ( sin 2 ) ( )

2

1
( sin 2 tan sin tan cos )
2

1
( ) [ cos 2 ( )sin 2 ]cos

2

T

T T

x t x Y Z t

y t y Y x t

x t Y t X x t

X Y X Y

N t r a r f

N t rb r f r a c

r a b c

     

    

           

      

= − − + −

= − − − − − + + 

 −  + −

− + −  + −

 (19) 

In the absence of disturbances ( ( ) ( ) 0)
T Tx y x xN t N t  = = = = , that is, in orientation 

mode, with 1 const.t =  and 2 const.t = , at equilibrium 1 1const.g t = = and 

2 const.g = = 2 2cost  (for
1 2/ and /c c

x g y gM K M K = = ); the sighting line tends to 

follow the target line, which, in turn, overlaps the equilibrium direction (the straight line 

with the dashed line in Fig.2.7.b resulting from the rotation of the axis Tox  with the 

angular t velocity). 

Coefficients 1r and 2r can be chosen, for example, as follows. If the maximum values are 

known 1 2, , ,g maximum g maximum maximum maximum    , then 

1 11 2
1 1 2,

g maximum g maximum

maximum maximum

k k
r r

K K

 
 

= = = =  (20) 

taking into account that in orientation mode (equation (18)), 1 / ,g xM K = 1g maximum =  

1t maximum= ,
2 2 2cosg maximum t maximum  =  and chosen  1 2/ /t maximum maximum t maximum  =  

    / maximum r = , results  

1 2
1 2 2 2, cos cost maximum t maximum

maximum maximum

r r r r
   
 

 = = = =  
(21) 

with 2 
 its average value of 2 . 
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Rotation of the sighting line (marking) oz with the angles  and  , so with angular 

velocities  and  , will generate gyroscopic torques, 

gxM K =  and
1

2

2(cos )gyM K =   (Fig.2.b and the equations (16)). 

Over these gyroscopic torques are superimposed correction torques 1(  and )c c

x yM M , (16), 

1 1 2 2, (cos ).c c

x g y gM K M K  =  =   These torques rotate the axis oz towards the axis Tox  

and this, in turn, rotates with the angular velocity of transport T (having the 

components 1t and 2t  along the axes Toy and Toz ). So, in orientation mode, the two axes 

(oz and Tox ) overlap the equilibrium direction (the line represented by the dashed line); 

the equilibrium direction marks the overlap of the reference line oz (axis TC, that is, the 

vector K ) over the target line Tox ; 0g t+ =  ( 1 1 2 2 2, cosg t g t    = = ). 

  Relative degrees of the dynamic model of GG in relation to the output variables 

1y = 1g and 2 2gy = are equal to 2; the equations (18) (in which 1

c

x x
g x

M k
i

K K
 = = and  

1

2 2cos

c

y y

g y

M k
i

K K
  = = ) can be expressed in the following forms 

2 2
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y y y
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y y y i

b K b

d a ff r r c c
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e e k Nr
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 


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

−
+ 
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(22) 

with xN  and
yN 
 by forms (19), in which they were replaced 1 and 2 with their average 

values 1  and 2  ; in (18) the correction moments were expressed 

1 ,c c

y y y x x xM k i M k i= =  (23) 

where xi and yi are the control currents applied to the two motors in the axes ox and 1oy , 

and xk and yk are the coefficients of proportionality with the torque/current dimension. 

     The system of nonlinear equations (22) (nonlinear dynamics of GG) can be expressed 

in the form 

2 1 4 2 5 1 2 12

4 1 2 2 8

ˆ ˆ y

x

m y m y m y y m i
= +

n y n y n i

− − + − 
 =   − − + 

y v v  (24) 
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4. CONCLUSIONS 

 

The nonlinear equations of the dynamics of the GG placed on a rocket, relative to an 

absolute reference trihedron, are derived using the generalized Euler equations, taking into 

account the angular velocities of the sighting line relative to the trihedron connected to the 

guidance line, the angular transport velocities of the guide line and the angular velocities of 

rocket. In the obtained equations, the new variables represented by the angular velocities of 

the line of sight are introduced 1g and 2g ,oriented so that and  the deviation angles of the 

sighting line from the guide line (according to Fig.2) cancel out. These angular precession 

speeds oriented around the cardanic suspension axes are created by gyroscopic effect by the 

correction moments (16) produced by the control moments
1(  and )c c

x yM M produced by CM1 

and CM2 engines.Through the action of these motors, the effects of external disturbances 

xN  and
yN   are compensated . These effects are due to the angular velocities of the base and 

orient the line of sight over the guide line. The control moments
1 and c c

x yM M are chosen 

proportionally to 1g and 2g (these are of the form (17), with the proportionality coefficients 

1r and 2r (respectively, 1k and 2k ) functions of maximum transport angular velocities 

1t maximum and 2t maximum  of the guide line and the angles maximum and maximum  of the sighting 

line relative to the target line (21). The directions of control moments
1 and c c

x yM M  are the 

same as the directions of the gyroscopic torques created by the angular velocities   and  of 

the sighting line (Fig.2.b). In orientation mode, according to equations (18) and 

Fig.2.b, 1 1g t = and
2 2 2cosg t  = , relations that impose the input vector of GG on the 

output vector
1 2[  ]T

g g =y . For reducing the bearing 2 of the sighting line so that 

2 2g t → , the rocket must be ordered through its pilot automatically so that 2 0 → . 

Relative degrees of the nonlinear dynamic model of GG (according to equations (22) in 

relation to the output vector variables 1g and 2g are equal with 2. By dynamic inversion, the 

vector of control currents yi and xi is calculated, these currents are applied to CM2 and CM1 

engines. 

For the nonlinear dynamic model (22), an adaptive controller is designed to stabilize and 

orient the line of sight over the guide line, using the concept of dynamic inversion and a 

neural network. 
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